Reading HTML tables into pandas DataFrames

The blog explains how to use the pandas.read_html() function to read HTML tables into Pandas DataFrames. This function is incredibly useful for web scraping and data analysis.
Author

Monika K, Bhuvi Kalarwal, Tanushree Deshmukh

Published

February 25, 2025

Introduction

The Pandas library in python provides a very handy function for copying tables from websites: pandas.read_html(). It helps us in extracting tables from an HTML page and converting them to Pandas DataFrames, ready for analysis.

Key Features

  1. io
pd.read_html(io=url)
  1. Match case
pd.read_html(url, match=' ')
  1. Flavor
pd.read_html(url, flavor='lxml')
  1. Header
pd.read_html(url, header=0)
  1. Index_col
pd.read_html(url, index_col=0)
  1. Skiprows
pd.read_html(url, skiprows=1)
  1. Attrs
pd.read_html(url, attrs={'class': ' '})
  1. Parse_dates
pd.read_html(url, parse_dates=True)
  1. Converters
converters = {2: lambda x: x.strip('%')}
pd.read_html(url, converters=converters)
  1. na_values
pd.read_html(url, na_values=['N/A', '-']))

For further reading refer to https://pandas.pydata.org/docs/reference/api/pandas.read_html.html#pandas.read_html

Conclusion

With above mentioned ways we can extract tables from websites using pandas.read_html(). By using its features, it becomes a quite useful tool for tasks such as research, data analysis and financial reporting. Its flexibility and ease make it a useful tool for anyone dealing with web data.